Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Flexible alkyl side chain in conjugate polymers (CPs) improves the solubility and promotes solution processability, in addition, it affects interchain packing and charge mobilities. Despite the well-known charge mobility and morphology correlation for these semi-crystalline polymers, there is a lack of fundamental understanding of the impact of side chain on their crystallization kinetics. In the present work, isothermal crystallization of five poly(3-alkylthiophene-2,5-diyl) (P3ATs) with different side-chain structures were systematically investigated. To suppress the extremely fast crystallization and trap the sample into amorphous glass, an advanced fast scanning chip calorimetry technique, which is able to quench the sample with few to tens thousands of K/s, was applied. Results show that the crystallization of P3ATs was greatly inhibited after incorporation of branched side chains, as indicated by a dramatic up to six orders of magnitude decrease in the crystallization rate. The suppressed crystallization of P3ATs were correlated with an increased π–π stacking distance due to unfavorable side-chain steric interaction. This work provides a pathway to use side-chain engineering to control the crystallization behavior for CPs, thus to control device performance.more » « less
-
Abstract Thin films with a nanometer‐scale thickness are of great interest to both scientific and industrial communities due to their numerous applications and unique behaviors different from the bulk. However, the understanding of thin‐film mechanics is still greatly hampered due to their intrinsic fragility and the lack of commercially available experimental instruments. In this review, we first discuss the progression of thin‐film mechanical testing methods based on the supporting substrate: film‐on‐solid substrate method, film‐on‐water tensile tests, and water‐assisted free‐standing tensile tests. By comparing past studies on a model polymer, polystyrene, the effect of different substrates and confinement effect on the thin‐film mechanics is evaluated. These techniques have generated fruitful scientific knowledge in the field of organic semiconductors for the understanding of structure–mechanical property relationships. We end this review by providing our perspective for their bright prospects in much broader applications and materials of interest.more » « less
-
Abstract Extensive efforts have been made to develop flexible electronics with conjugated polymers that are intrinsically stretchable and soft. We recently systematically investigated the influence of conjugation break spacers (CBS) on the thermomechanical properties of a series n‐type naphthalene diimide‐based conjugated polymer and found that CBS can significantly reduce chain rigidity, melting point, as well as glass transition temperature. In the current work, we further examined the influence of CBS on the crystallization behaviors of PNDI‐C3 to C6, including isothermal crystallization kinetics, crystal polymorphism and subsequently time‐dependent modulus, in a holistic approach using differential scanning calorimetry, X‐ray scattering, polarized optical microscopy, atomic force microscopy, and pseudo‐free‐standing tensile test. Results demonstrate that increasing the length of CBS increases the crystallization half‐time by 1 order of magnitude from PNDI‐C3 to PNDI‐C6 from approximately 103to 104 s. The crystallization rate shows a bimodal dependence on the temperature due to the presence of different polymorphs. In addition, crystallization significantly affects the mechanical response, a stiffening in the modulus of nearly three times is observed for PNDI‐C5 when annealed at room temperature for 12 h. Crystallization kinetic is also influenced by molecular weight (MW). Higher MW PNDI‐C3 crystallizes slower. In addition, an odd–even effect was observed below 50°C, odd‐number PNDI‐Cxs (C3 and C5) crystallize slower than the adjacent even‐numbered PNDI‐Cxs (C4 and C6). Our work provides an insight to design flexible electronics by systematically tuning the mechanical properties through control of polymer crystallization by tuning backbone rigidity.more » « less
-
Abstract The morphological stability of an organic photovoltaic (OPV) device is greatly affected by the dynamics of donors and acceptors occurring near the device's operational temperature. These dynamics can be quantified by the glass transition temperature (Tg) of conjugated polymers (CPs). Because flexible side chains possess much faster dynamics, the cleavage of the alkyl side chains will reduce chain dynamics, leading to a higherTg. In this work, theTgs for CPs are systematically studied with controlled side chain cleavage. Isothermal annealing of polythiophenes featuring thermally cleavable side chains at 140 °C, is found to remove more than 95% of alkyl side chains in 24 h, and raise the backboneTgfrom 23 to 75 °C. Coarse grain molecular dynamics simulations are used to understand theTgdependence on side chain cleavage. X‐ray scattering indicates that the relative degree of crystallization remains constantduring isothermal annealing process. The effective conjugation length is not influenced by thermal cleavage; however, the density of chromophore is doubled after the complete removal of alkyl side chains. The combined effect of enhancingTgand conserving crystalline structures during the thermal cleavage process can provide a pathway to improving the stability of optoelectronic properties in future OPV devices.more » « less
An official website of the United States government
